CETIFICATION

SDG No:

JC24003

Laboratory:

Accutest, New Jersey

Site:

BMSMC, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – BMSMC, Building 5 Area, PR. The BMSMC facility is located in Humacao, PR. Samples were taken July 08-11, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for 1,4-Dioxane and Naphthalene. The results were reported under SDG No.: JC24003. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC24003-1	OSGP1-GW5	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC24003-2	OSGP1-GWD	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC24003-2	OSGP1-GWD	Groundwater	1,-4-dioxane (Scan)
JC24003-3	OSGP5-GW5	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC24003-3	OSGP5-GW5	Groundwater	1,-4-dioxane (Scan)
JC24003-4	OSGP7-GWD	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC24003-4	OSGP7-GWD	Groundwater	1,-4-dioxane (Scan)
JC24003-5	BPEB-6	AQ – Equipment Blank	1,-4-dioxane and Naphthalene (SIM)

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 24 2016

Report of Analysis

Page 1 of 1

Client Sample ID: OSGP1-GW5 Lab Sample ID: JC24003-1 Matrix:

AQ - Ground Water

Date Sampled: 07/08/16 Date Received: 07/13/16

Method: Project:

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 3P55100.D 1 07/14/16 HC 07/13/16 OP95563A E3P2511

Run #2

Initial Volume Final Volume Run #1 910 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q	
91-20-3	Naphthalene	ND	0.11	0.032	ug/l		
123-91-1	1,4-Dioxane	4.93	0.11	0.054	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	67%		24-1	25%		
321-60-8	2-Fluorobiphenyl	64%		19-1	27%		
1718-51-0	Terphenyl-d14	65%		10-1	19%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP1-GWD
Lab Sample ID:	JC24003-2

Initial Volume

910 ml

AQ - Ground Water

Date Sampled: 07/08/16 Date Received: 07/13/16

Matrix: Method: Project:

Run #1

1718-51-0

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Final Volume

1.0 ml

Percent Solids:

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3P55101.D	1	07/14/16	HC	07/13/16	OP95563A	E3P2511
Run #2	F159008.D	100	07/15/16	BP	07/13/16	OP95563A	EF6690

0% b

10-119%

Run #2	910 ml	1.0 ml					
CAS No.	Compound		Result	RL	MDL	Units	Q
91-20-3 123-91-1	Naphthalene 1,4-Dioxane		ND 3090 a	0.11 110	0.032 5.4	ug/l ug/l	
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lim	its	
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobipheny		67% 63%	0% ^b		125% 127%	

64%

- (a) Result is from Run# 2
- (b) Outside control limits due to dilution.

Terphenyl-d14

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

1	
Client Sample ID:	OSGP2-GW5
Lab Sample ID:	JC24003-3

AQ - Ground Water

Date Sampled: 07/11/16 Date Received: 07/13/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Run #1 Run #2	File ID 3P55102.D 2P60998.D	DF 1 20	Analyzed 07/14/16 07/14/16	By HC RL	Prep Date 07/13/16 07/13/16	Prep Batch OP95563A OP95563A	Analytical Batch E3P2511 E2P2663
------------------	-----------------------------------	---------------	----------------------------------	----------------	-----------------------------------	------------------------------------	--

Run #1 Run #2	910 ml 910 ml	Fmal Volum 1.0 ml 1.0 ml	c					
CAS No.	Compound		Result	RL	MDL Units	Q		

91-20-3 Naphthalene		ND	0.11	0.032 ug/l
123-91-1 1,4-Dioxane		1130 a	22	1.1 ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	70%	59%	24-125%
321-60-8	2-Fluorobiphenyl	65%	74%	19-127%
1718-51-0	Terphenyl-d14	63%	67%	10-119%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Raw Data: 3P55103.D 2P60997.D

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sa Lab Sam Matrix: Method: Project:	AQ SW8	1003-4 - Ground W 146 8270D I	ater 3Y SIM SW846 ing 5 Area, PR	6 3510C	Da	ate Sampled: ate Received: creent Solids:	07/13/16
Run #1	File ID 3P55103.D	DF 1	Analyzed 07/14/16	By HC	Prep Date 07/13/16	Prep Bate OP95563A	•

Run #2	2P60997.D	1	07/14/16	RL	07/13/16	OP95563A	E2P2663	
	Initial Volume	Final	Volume					
Run #1	920 ml	1.0 ml						
Run #2	920 ml	1.0 ml						

Q

CAS No.	Compound	Result	RL	MDL	Units		
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 7.14 ^a	0.11 1.1	0.032 0.053	ug/l ug/l		
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	Limits		
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	86% 83%	78% 92%		25% 27%		
1718-51-0	Terphenyl-d14	76%	70%	10-1	19%		

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: **BPEB-6** Lab Sample ID:

JC24003-5 Matrix:

AQ - Equipment Blank SW846 8270D BY SIM SW846 3510C Date Sampled: 07/08/16 Date Received: 07/13/16 Percent Solids: n/a

Q

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed Prep Date Prep Batch Analytical Batch By Run #1 3P55104.D HC 1 07/14/16 07/13/16 OP95563A E3P2511

Run #2

Method:

Final Volume **Initial Volume** Run #1 1000 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units 91-20-3 Naphthalene ND 0.10 0.029 ug/l 123-91-1 1,4-Dioxane ND 0.10 0.049ug/l CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 80% 24-125% 321-60-8 2-Fluorobiphenyl 77% 19-127% 1718-51-0 Terphenyl-d14 75% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

		ACCUTEST	-	ا عام		CHAI	N (OF (CUS	го	D	7				r					-	_				_ 0	F <u>/</u>
		NJ		60	,	7231 TEL 732-1			L MJ (888)		RO.						on.	186	288	345	7		- 01				
	-940	Client / Reporting Information	research a point	in this	200 PS 42 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	E Manda at		prompter.c		44.65	S Les	with:	- X-1-	20.6								1			<u> </u>	24	1003
	i i	Ny Nama	Project to		Service 2 desired from an ext	Project	HEIGHTE	ROOR	9/3-1/3	22.00	200	24	10.30		完产	- 4	Re	questi	d Ana	lyaks (500	TEST (CODE	sheet)		107.7	Matrix Codes
	1	30n Mulholland & Associates	RMSMC	Dhan	a ZA Roleasa	A										3			1		ı	1	1		1		DW - Drinking Water
â	Secol 4	- different	Street		on the translation	~~~	sticke :	TIVE	1-1-25/2	S		NAME OF	41,54	dia -	e	D BAN	1	1		1	Ì	1	1	,	1		BW - Ground Water WW - Water
	2780 t	Nestchester Avenue, Suite 417 Size Zo	Cay			Sure	Eming	industrials.	10 (F dill)	erent I	man P	operi	neļ.			\$2700		1				1		ŀ			SW - Surface Years SO - Sal
	Purch		10577 Humaca	_		PR	Compa	ly flatte								3						i	ļ				SL-Shelps SED-Sedmant
		Coresci E 🖷		-		***	Street A	dress				_				\$	1	1				1	1				CI - CII
	Promi	ry Taylor Fee	G21 Chert Pun													1		1	[ĺ		ĺ	l]			Alfi - Az SOL - Other Sots
		-251-8400	Califor Push	Grane (Origina de		Cay			-	Simin			Zp		Naphih siens		1									Wo - Was
16	S-1	rtsi Manust Pro	W P Propert Me	-			Allering	TK .			-	_	-			and	1	i i		Į.							FB-Field State: CB-Equipment State.
7	N. F	Uvera, R. Stuert, R. O'Rellly, T. Taylor	Terry Ta	ylor			$oxed{oxed}$										l										RB-Rives Stant. TS-Trip Mone
0				ŀ		1	_	1		H	1	or all gove	1	Beller To		10 II						l		}	Ιi		
75		Field ID / Point of Collection	Michiga		Date	₁₀₀	E-report No.				ğ İğ	ě		ě		1,4-Diozana	ļ	1				l			H		1
	1	OSGP 1-GWS		_	7-8-14	1045	77	GW	2	H	+		, -	1	Н	X		-		\vdash			-	├—	┝┤	_	LAB USE ONLY
*	7.	-05GP 2 - GWB 046PI	-GND	\rightarrow	7-8-16	1400	74	GW	2	╁	- -	-	;-	╫	Н	X	⊢	-	\vdash			⊢					EYZ
4	7	OSGP 2-6 W5		\rightarrow	7-11-16	1055	TY	GW	2	╆╼┾	+	-	1	H	╂	X	H	1			_	├	<u> </u>	<u> </u>	\vdash		
	य	OSGP 7 -GWD		_	7-11-6	1355	77	-		╁	+	-	1	-	╌┤╌┤	_	-		Н	-	<u> </u>	 	<u> </u>		\vdash	-	
	-1		201	-	7-11-0	1395	17	GW	2	H	- -	1	-		╢	Х	H	\vdash	-		_	_		_			
				-		-				H	╀	1	+	4	\sqcup			ļ									
				-				_		- -	₩	4	-	4	- -		_						<u> </u>				
1							<u> </u>			H	4-1	4	44		11			\square						Ш		l	
		-		\dashv				H		H	44	4	11	4	Ц												
				\rightarrow		-				Ц.	Ш	4	Ц	4	Ц							L.		L			
										Ш	Ш	4	\sqcup	\perp	Ш					I						T	
	5	BPEB- C								Ц	Ш		Ц		Ш					1							
- 1	3	Terrestant Time / Business steps	72/2/2			1230	11	EB	2		Ш	_ i	-	1	П	X	95	36	_ 7	, E,		-			74		100
ł		SAC, 15 Baseresa Days		_	et Prije / Bank	J P PIVOL			Dista of "A" (La	_	erabiy I	-		ASP C	_		79.454	242	(E)	. 4	Come	nunts /	Specie	i instruc	hone ?	4234	Left Company
		Sine, 10 Boolinese Days (by Contract enty) 10 they PALSH					Ē		e e ju	- Z				ASP C					_								
- 1		1 Day Rush		_				TYLLIUP COMPONIAL	Laved 3+4	1			_	ta Fen	-					(1.1)	141	4200	20.45	201-4	drh.	.54	
- 1		3 Day ENERGENCY						-						D Fen			-			11411	INL.	AJES	MINIE	111 _2		<u>.</u>	
- [TONY EMERGENCY TONY EMERGENCY										in On	¥			-				LAB	ELV	ERIF	ICAT	ION_	<u> </u>		
- [-	oncy & Rush Tax data available VAX Landers						4	Commerce III Mathics	ed = Ro	-	1001	lumm.	les e P	'artigi F	tan an											361
ŀ	-61-		170	States O line	pic Custody we shared for 1	of he docume	entred has	low each	time par		char	90 90	****	olium, I	Inched	mg a	urior			191	٠,-	٤	1/21	the Ex	a pr	259	4年,中心15年。
-	والآب		2-10 -	1	Fed	ΕX			[2			P	5/1					7-13	r/ "	-	**************************************	Hy:	\rightarrow	1		The second
	-	read by Sample: Com To		1	record Ogs					_	-	Þрк	,,						h- 71-		\dashv		Byr	1.	7		
F	-	miled by: Descrip		-	Married By				-	-	y Year o	-							d whom i	المراجع		4		Do bo	-	Casabe †	
1_				ļš						20	راغ	2	62	4	0	-			0				: N	0			3.6 2.B
																											IP

JC24003: Chain of Custody

Page 1 of 2

EXECUTIVE NARRATIVE

SDG No:

. . . .

JC24003

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

5

Location:

BMSMC, Building 5 Area, PR

Humacao, PR

SUMMARY: Five (5) samples were analyzed for the ABN TCL list following method SW846-8270D using the selective ion monitoring (SIM) technique. Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D- scanning mode in samples JC24003-2, JC24003-3, and JC24003-4. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 —Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major: Minor:

None None

Critical findings: Major findings:

None

Minor findings:

None

1. Initial and continuing calibration verifications meet the method and guidance document

required performance criteria. No closing calibration verification included in data package.

No action taken, professional judgment.

2. DMCs meet the required criteria except in the cases described in the Data Review Worksheet. Non- deuterated surrogates added to the samples were within laboratory recovery limits except in the cases described in the Data Review Worksheet. None of the surrogates recovered in sample JC24003-2 due to dilution. No action taken,

professional judgment.

3. No MS/MSD data included in the data package. Blank spike/blank spike duplicate used to assess accuracy. % recoveries and RPD within laboratory control limits. No action

taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

afail arlust

Signature:

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

. . .

Sample ID: JC24003-1

Sample location: BMSMC, Building 5 Area

Sampling date: 7/8/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

 Naphthalene
 0.11
 ug/l
 1
 U
 Yes

 1,4-Dioxane
 4.93
 ug/l
 1
 Yes

Sample ID: JC24003-2

Sample location: BMSMC, Building 5 Area

Sampling date: 7/8/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene 0.11 ug/l 1 - U Yes 1,4-Dioxane - ug/l - - -

Sample ID: JC24003-2

Sample location: BMSMC, Building 5 Area

Sampling date: 7/8/2016

Matrix: Groundwater

METHOD: 8270D (Scan)

1,4-Dioxane 3090 ug/l 100 - Yes

Sample ID: JC24003-3

Sample location: BMSMC, Building 5 Area

Sampling date: 7/11/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene 0.11 ug/l 1 - U Yes 1,4-Dioxane - - - - - - - -

Sample ID: JC24003-3

Sample location: BMSMC, Building 5 Area

Sampling date: 7/11/2016

Matrix: Groundwater

METHOD: 8270D (Scan)

1,4-Dioxane 1130 ug/l 20 - - Yes

Sample ID: JC24003-4

Sample location: BMSMC, Building 5 Area

Sampling date: 7/11/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene 0.11 ug/l 1 - U Yes 1,4-Dioxane - - - - - - -

Sample ID: JC24003-4

Sample location: BMSMC, Building 5 Area

Sampling date: 7/11/2016

Matrix: Groundwater

METHOD: 8270D (Scan)

1,4-Dioxane 7.14 ug/l 1 - - Yes

Sample ID: JC24003-5

Sample location: BMSMC, Building 5 Area

Sampling date: 7/8/2016

Matrix: AQ - Equipment Blank

METHOD: 8270D (SIM)

 Naphthalene
 0.10
 ug/l
 1
 U
 Yes

 1,4-Dioxane
 0.10
 ug/l
 1
 U
 Yes

	Date: July_08-July_11,_2016
	Shipping Date:July_12,_2016
	EPA Region:2
REVIEW OF SEMIVOLATILE	ORGANIC PACKAGE
The following guidelines for evaluating volatile of validation actions. This document will assist the make more informed decision and in better service results were assessed according to USEPA defollowing order of precedence: EPA Hazardous 2015—Revision 0. Semivolatile Data Validation. The on the data review worksheets are from the prin noted.	reviewer in using professional judgment to ng the needs of the data users. The sample ata validation guidance documents in the Waste Support Section, SOP HW-35A, July QC criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance (included:	
Lab. Project/SDG No.:JC24003 No. of Samples:3_Scan/5_SIM	Sample matrix:Groundwater
Trip blank No.:	
Field blank No.:	
Equipment blank No.:JC24003-5	
Field duplicate No.:	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
_Overall Comments:_Naphthalene_and_1,4-Dioxane_a _Samples_JC24003-2,_JC24003-3,_and_JC24003-4_a _(Scan)	
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer:	
Date:July_24,_2016	

Project Number:_JC24003_____

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
7		10.28 100 - 1010 - 11
-		
	4	
14-40/42 2006-E		
	42	
1.1 - Lilian	<u> </u>	
**		
	-	
		-
		A.
		A
-	<u>. </u>	

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	pН	ACTION
All samples e preserved.	extracted and an	alyzed within method recon	nmen	ded holding time. Samples properly

Cooler temperature ((Criteria: 4 + 2 °C)	: 4.5°C

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

-	1 4010 1. 11010	ing Time Actions for Semive			
				tion	
Matrix	Preserved	Criteria	Detected	Non-Detected	
			Associated	Associated	
			Compounds	Compounds	
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professi	onal judgment	
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qua	lification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	ΩJ	
	Yes/No	Grossly Exceeded	J	UJ or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professi	onal judgment	
Non Agusoug	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Non-Aqueous	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qua	No qualification	
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	ហ	
	Yes/No	Grossly Exceeded	J	UJ or R	

				All criteria were metX ere not met see below
GC/MS	TUNING	3		
The ass		nt of the tuning results is to determine	ne if the sample instrumentation is	within the standard
_X	The DF	TPP performance results were revi	ewed and found to be within the sp	ecified criteria.
_X	DFTPP	tuning was performed for every 12	hours of sample analysis.	
If no, us or reject	•	ssional judgment to determine whe	ther the associated data should be	accepted, qualified
	Notes:	These requirements do not appl Monitoring (SIM) technique.	y when samples are analyzed by	the Selected Ion
	Notes:		must be identical to those used on actions resulting in spections of DFTPP failure.	
			strument performance check solution of is to be performed by the SIM te	_
List		the	samples	affected:

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Instrument ID numbers:	_07/06/16_(SIM) GCMS3P Aqueous/low
Instrument ID numbers:	06/90/16_(Scan) GCMSF Aqueous/low
Instrument ID numbers:	06/23-24/16_(Scan) GCMS2P Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial	and initi	al calib		ts the method and guida nance criteria.	ance validation document

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Cuttout	Action				
Criteria	Detect	Non-detect			
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R			
Initial Calibration not performed at the specified concentrations	ı	UJ			
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R			
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification			
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment			
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification			

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ^t	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	±50.0
Phenol	0.080	20.0	± 20.0	± 25.0
Bis(2-chlorocthyl)ether	0.100	20.0	±20.0	±25.0
2-Chlorophenol	0.200	20.0	± 20.0	±25.0
2-Methylphenol	0.010	20,0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	± 20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	± 50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	± 20.0	±25.0
Nitrobenzene	0.090	20.0	±20.0	±25.0
Isophorone	0.100	20.0	±20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	±20.0	±25.0
2,4-Dichlorophenol	0.060	20.0	±20.0	±25.0
Naphthalene	0.200	20.0	±20.0	± 25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	±20.0	±25.0
Caprolactam	0.010	40.0	±30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	±20.0	±25.0
lexachlorocyclopentadiene	0.010	40.0	± 40.0	±50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	±20.0	± 25.0
I,1'-Biphenyl	0.200	20.0	± 20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	±25.0
Acenaphthylene	0.400	20.0	±20.0	± 25.0
3-Nitroaniline	0.010	20.0	±25.0	±50.0
Acenaphthene	0.200	20.0	± 20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	± 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	±20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	±25.0
4-Chlorophenyl-phenylether	0.100	20.0	±20.0	±25.0
Fluorene	0.200	20.0	± 20.0	± 25.0
4-Nitroaniline	0.010	40.0	±40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	±20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
Hexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	±20.0	± 25.0
Anthracene	0.200	20.0	± 20.0	±25.0
Carbazole	0.050	20.0	±20.0	±25.0
Di-n-butylphthalate	0.500	20.0	±20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	±25.0
Pyrene	0.400	20.0	±25.0	±50.0
Butylbenzylphthalate	0.100	20.0	±25.0	±50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	± 25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	±30.0	± 50.0
2,3,4,6-Tetrachlorophenoi	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	± 25.0
Acenaphthylene	0.900	20.0	± 20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	± 25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	±40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	±40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-d ₅	0.010	20.0	±25.0	±25.0
Bis-(2-chloroethyl)ether-da	0.100	20.0	± 20.0	± 25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20.0	±25.0
4-Methylphenol-d ₈	0.010	20.0	± 20.0	±25.0
4-Chloroaniline-d ₄	0.010	40.0	±40.0	±50.0
Nitrobenzene-d₅	0.050	20.0	±20.0	±25.0
2-Nitrophenol-d4	0.050	20.0	± 20.0	± 25.0
2,4-Dichlorophenol-d3	0.060	20.0	± 20.0	± 25.0
Dimethylphthalate-d ₆	0.300	20.0	±20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	± 20.0	±25.0
4-Nitrophenol-d4	0.010	40.0	± 40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	±20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	±30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	± 25.0
Pyrene-d _{to}	0.300	20.0	±25.0	±50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	± 25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	± 20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were metX					
Criteria were not met					
and/or see below					

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

		Date of initial calibratic Date of continuing cal Date of closing CCV:_Instrument ID number Matrix/Level:	on verification (ICV):ibration verification (CC\ s:	06/16_(SIM) 07/06/16	
		Matrix/Level: Date of initial calibration	Aqı on:06/09	GCMS2Pueous/low	
		Date of continuing cal Date of closing CCV:_ Instrument ID number	ibration verification (CC\ s:	09-10/16	
ATE	LAB ID#	CRITERIA OUT	COMPOUND	SAMPLES AFFECTED	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria. No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate

DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV	Action		
Citteria for Opening CCV	Criteria for Clusting CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	UJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were met _X
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL! MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	llytes_detected_	_in_method_bla	anks	
Field/ <u>Equipment</u>	/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			nent_blankNo_field/trij	p_blanks_analyzed_with_this
		111111111111		

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
	≥CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
Method,		≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
ž.	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
i					
<u> </u>					

k destrice

Croundwater

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Action Criteria Detect Non-detect %R < 10% (excluding DMCs with 10% as a lower J-R acceptance limit) $10\% \le \%R$ (excluding DMCs with 10% as a lower J-UJ acceptance limit) < Lower Acceptance Limit No qualification Lower Acceptance limit $\leq \%R \leq Upper Acceptance Limit$ No qualification %R > Upper Acceptance Limit]+ No qualification

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

IVIALIXGIOUIIUWatei_		
SAMPLE ID	SURROGATE COMPOUND	ACTION
	red_criteria_except_in_the_cases_describen_in_ _added_to_the_samples_were_within_laboratory n_this_document	
_None_of_the_surrogate _professional_judgment	es_recovered_in_sample_JC24003-2_due_to_dil	lutionNo_action_taken,_
9 99 99 99 99 99 99 99 99 99 99 99 99 9		

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-da (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d4 (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₄ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octy/lphthalate		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	I-lexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)	
Fluoranthene	Naphthalene	
Pyrene	2-Methylnaphthalene	
Benzo(a)anthracene	Acenaphthylene	
Chrysene	Acenaphthene	
Benzo(b)fluoranthene	Fluorene	
Benzo(k)fluoranthene	Pentachlorophenol	
Benzo(a)pyrene	Phenanthrene	
Indeno(1,2,3-cd)pyrene	Anthracene	
Dibenzo(a,h)anthracene		
Benzo(g,h,i)perylene		

All criteria were met _	_X
Criteria were not met	
and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the comp	oounds which do not meet t	he criteria.
-------------------------------	----------------------------	--------------

Sample ID:	Matrix/Level:

Note: No MS/MSD data included in the data package. Blank spike/blank spike duplicate used to assess accuracy. % recoveries and RPD within laboratory control limits. No action taken, professional judgment.

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _X
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Cinena	Detect	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below	
TARGET CO	MPOUND IDENTIFICATION		
Criteria:			
	e Retention Times (RRTs) of reported compoung Continuing Calibration Verification (CCV)		
List compour	nds not meeting the criteria described above:		
Sample ID	Compounds	Actions	
spectrum fro	a of the sample compound and a current labor m the associated calibration standard (opening nust match according to the following criteria: All ions present in the standard mass spectrum. The relative intensities of these ions must again sample spectra (e.g., for an ion with an abuthe corresponding sample ion abundance mullions present at greater than 10% in the samp standard spectrum, must be evaluated by interpretation.	g CCV or mid-point standard from initial rum at a relative intensity greater than 10% ree within ±20% between the standard and indance of 50% in the standard spectrum ist be between 30-70%). The ple mass spectrum, but not present in the standard spectrum, but not present in the standard spectrum.	al % d n,
List compoun	nds not meeting the criteria described above:		
Sample ID	Compounds	Actions	
_ldentified_co	ompounds_meet_the_required_criteria		

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

		235		
Sample ID	Compound	Sample ID	Compound	
•			.0	
				====
			support t	
			= 4	

Action:

List TICs

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action		
Cinena	Detects	Non-detects		
%Solids < 10.0%	Use professional judgment	Use professional judgment		
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment		
%Solids > 30.0%	No qualification	No qualification		

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION		
JC24003-2	100 X	1,4-dioxane over calibration range		
JC24003-3	20 X	1,4-dioxane over calibration range		
013-16-148				
	-,			
		A CONTRACTOR OF THE PROPERTY O		
3 400000				
	T. T. Salah			
	Table 1			
	\$			
-0-				
100				

				Crite	riteria were metX ria were not met or see below	
FIELD DUPLICATE	PRECIS	SION				
Sample IDs	·			Ма	trix:	
analyses measure laboratory duplicate will have a greater field duplicate samp The project QAPP s Suggested criteria:	both fields which variance les. hould be if large	d and lab precision only laboratory post than water matrice reviewed for project (> 50 %) is	on; therefore, the resignation; therefore, the resignation and the resignation are the resignation; the resignation are the resignati	uits may expected associati n. entification	f overall precision. Thave more variability that soil duplicate red with collecting idea of the samples and abled.	than esults ntical
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
					% recovery RPD used get analytes above 5	
				-		-

			Criteria were not met and/or see below
OTHE	R ISSUES		
A.	System Perfo	rmance	
List sa	amples qualified	based on the degradation of system	performance during simple analysis:
Sampl	le ID	Comments	Actions
	W .	<u> </u>	
Action	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
during degrae	sample analys dation of system	ses. Inform the Contract Laboratory performance which significantly affect	nined that system performance has degraded y Program COR any action as a result of cted the data.
B.	Overall Assess	sment of Data	
List sa	mples qualified	based on other issues:	
Sampl	e ID =========	Comments	Actions
			_dataResults_are_valid_and_can_be_used n_below
Note:		nd JC24003-2: There are compounds ned by re-extraction outside the holding	s in BS were outside in house QC limits. The

All criteria were met __X___

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results